New Acetogenins from the Seeds of Annona coriacea

by Thayana da C. Alves^a), Mariele R. S. Gonçalves^a), Francyne C. S. Correia^a), Virgínia C. da Silva^a), Paulo T. de Sousa Jr.^a), Mário G. de Carvalho^b), Raimundo Braz-Filho^b), and Evandro L. Dall'Oglio^{*a})

^a) Universidade Federal de Mato Grosso, Departamento de Química, 78060-900, Cuiabá, Mato Grosso, Brazil (e-mail: dalloglio.evandro@gmail.com)

^b) Universidade Federal Rural do Rio de Janeiro, Departamento de Química, 23800-000, Seropédica, Rio de Janeiro, Brazil

From the hexane and MeOH extracts of *Annona coriacea* MART. (Annonaceae) seeds, two novel acetogenins, coriapentocins A and B (1 and 2, resp.) were isolated. The known acetogenin bullacin (3) was also isolated from the hexane extract. The structures of compounds 1-3 were elucidated by NMR and MS analysis, and relative configurations were established by comparison with literature data.

Introduction. – The family Annonaceae consists of *ca.* 135 genera and 2500 species [1]. In Brazil, 26 genera are recorded, comprising *ca.* 260 species [2]. The acetogenins, which are a series of secondary metabolites isolated exclusively from Annonaceae species, have been identified in various plants parts, mainly in the leaves, stems, and seeds, in only eleven genera [3]. These natural products exhibit a range of important biological features, such as antitumor, pesticidal, antimicrobial, cytotoxic, antiparasitic, vermicidal, immunosuppressive, antihelminthic, abortive, antiprotozoal, appetite-inhibiting, antimalarial, and antiemetic activities [1-3]. Herein, we report the structure elucidation of two novel isomeric mono-THF acetogenins, mainly by using ESI-LC/MS and HR-ESI-MS techniques. The compounds coriapentocin A (1) and its isomer coriapentocin B (2) were identified in the hexane and MeOH extracts, respectively, from the seeds of *A. coriacea*. The known acetogenin bullacin (3) was also identified as a major component of the former extract (*Fig. 1*).

Results and Discussion. – In the fractionation of the hexane extract of the seeds of *A. coriacea*, the MeOH fraction provided two acetogenins which were confirmed by the peaks observed by ESI-LC/MS corresponding to the mono-THF acetogenin coriapentocin A (1) and the known 'adjacent' bis-THF acetogenin bullacin (3). Compound 3 provided peaks of *quasi*-molecular ions ($[M + Na]^+$ and $[M + H]^+$), at *m*/*z* 645.3 and 623.3, respectively. HR-ESI-MS Experiments afforded a *quasi*-molecular ion ($[M + H]^+$) peak at *m*/*z* 623.4894, compatible with the calculated value for C₃₇H₆₇O₇⁺ (calc. 623.4887). These results, along with 1D- and 2D-NMR experiments, and comparison with literature data, confirmed the structure of **3** [4]. ESI-MS Experiments for compound **1** afforded peaks of *quasi*-molecular ions at *m*/*z* 635.1 and 613.1, corresponding to the $[M + Na]^+$ and $[M + H]^+$ adducts, respectively. HR-ESI-MS Experiments led to a peak at *m*/*z* 613.4696 corresponding to $[M + H]^+$ ion from **1**, compatible with the calculated value for C₃₅H₆₅O₈⁺ (calc. 613.4679).

^{© 2014} Verlag Helvetica Chimica Acta AG, Zürich

Fig. 1. Acetogenis from the seeds of A. coriacea.

The analysis of the MeOH extract by ESI-LC/MS afforded another mono-THF acetogenin, named coriapentocin B (2) of which a major peak at m/z 613.1, corresponding to $[M + H]^+$, as well as the peak of the Na-adduct $([M + Na]^+)$ at m/z 635.1 were detected. The HR-ESI Mass spectrum displayed an $[M + H]^+$ peak at m/z 613.4283, matching with the calculated value for $C_{35}H_{65}O_8^+$ (calc. 613.4679), compatible with coriapentocin B (2).

The ¹H- and ¹³C-NMR data of **1** and **2** were very similar (*Tables 1* and 2) as well as the positive tests when submitted to *Kedde* reagent [5]. The structural differences between **1** and **2** were detected by the ESI-MS/MS analysis in positioning of the 1,3-diol moietiy.

Substance **1** showed characteristic IR absorption bands at 3401 (OH), 2924 and 2846 (Me, CH₂), 1751 (C=O), 1656 (α , β -unsaturated C=C), 1460 and 1375 (CH₂ and Me), and 1073 (C–O) cm⁻¹.

The ¹H-NMR spectrum of **1** (*Table 1*) exhibited signals at $\delta(H)$ 7.38 (*s*) and 5.11– 5.14 (*m*) assigned by HSQC to C-atom signals at $\delta(C)$ 153.0 (C(33)) and 78.4 (C(34)) of the γ -lactone moiety, respectively. In the ¹³C-DEPT-Q spectrum, signals of the other corresponding vinylic C-atom at 130.1 (C(2)), the C=O group at 175.1 (C(1)), and the signal in a higher field at $\delta(C)$ 17.8 corresponding to the Me(35) were observed. These signals confirmed the presence of an α,β -unsaturated- γ -lactone moiety in **1**. The COSY spectrum evidenced the connection of the Me(35) group ($\delta(H)$ 1.42 (d, J = 6.8)) to H–C(34) ($\delta(H)$ 5.11–5.14 (*m*)). The HMBCs (*Fig. 2*) between the signals of CH₂(3) group and that at $\delta(C)$ 175.1 (C(1)) confirmed the alkyl vicinity and the connection to the C-atom resonating at $\delta(C)$ 130.1 (C(2)). HMBCs were also observed for the signals of CH₂(3) group with those of the C-atoms resonating at $\delta(C)$ 69.0 (C(4)) and 36.9 (C(5)), which evidenced the presence of the HO–C(4) group (*Fig. 2, a*).

According to the HMBCs, the cross-peaks evidenced the positions of the O-bearing C-atoms by correlations between the *multiplet* at $\delta(H) 2.00-2.21$ with the super-

Position	1		
	$\delta(\mathrm{H})$	$\delta(C)$	
1	_	175.1	
2	_	130.1	
3	2.26 (dd , $J = 14.5$, 8.0, H_a), 2.44 (br. d , $J = 14.5$, H_β)	32.6	
4	$3.83 - 3.85 (m)^{a}$	69.0	
5	$1.32 - 1.37 (m)^{a}$	36.9	
6-9	$1.32 - 1.37 (m)^{a}$	22.4-37.0	
10	$3.52 - 3.63 (m)^{a}$	80.0	
11	1.51 - 1.55 (m)	40.5	
12	$3.37 - 3.71 (m)^{a}$	70.6	
13-16	$1.32 - 1.37 (m)^{a}$	22.4-37.0	
17	$3.43 - 3.45 (m)^{a}$	73.9	
18	$3.83 - 3.85 (m)^{a}$	83.0	
19-20	2.00-2.21(m)	28.2-28.3	
21	$3.83 - 3.85 (m)^{a}$	82.6	
22	$3.43 - 3.45 (m)^{a}$	72.6	
23-31	$1.32 - 1.37 (m)^{a}$	22.4-37.0	
32	0.93 (t, J = 6.5)	13.1	
33	7.38(s)	153.0	
34	5.11–5.14 <i>(m)</i>	78.4	
35	1.42 $(d, J = 6.8)$	17.8	

Table 1. ¹H- and ¹³C-NMR (500 and 125 MHz, resp., in CD₃OD) Data of Coriapentocin A (1). Atom numbering as indicated in Fig. 1.

a) Signals overlaped.

Fig. 2. HMBCs $(H \rightarrow C)$ of the α,β -unsaturated γ -lactone moiety (A) and the mono-THF α,α' dihydroxylated system (B) of **1**

imposed signals at $\delta(C)$ 28.2–28.3 (C(19), C(20)) and the long-range couplings CH₂(23)/C(21), CH₂(20)/C(21), CH₂(16)/C(18), and CH₂(19)/C(18), confirming a α, α' -dihydroxylated mono-THF system connecting two aliphatic chains (*Fig. 2, b*). A comparative analysis of ¹H- and ¹³C-NMR data with those of natural models allowed us to propose a relative configuration to the mono-THF ring as *threo/trans/threo* [5][6].

The 1,3-diol moiety in compound **1** was evidenced by HMBCs, showing long-range couplings from the signal of H–C(10) (δ (H) 3.52–3.63) to that of C(12), and additional analysis of COSY with the coupling signals of H–C(10) to that of H–C(12) (δ (H) 3.37–3.71) and the *multiplet* of H–C(11) (δ (H) 1.51–1.55) (*Table 1*). For the acetogenin **2**, the positioning of the 1,3-diol group was deduced from HMBC spectra

with the correlations H–C(6) (δ (H) 3.67–3.69)/C(6)/C(5) and the couplings detected in the COSY spectrum between the signals of H–C(6) (δ (H) 3.67–3.69) with those of H–C(4)/H–C(5). The HMBC from H–C(10)/H–C(11) (δ (H) 1.36–1.41) to C(12) (δ (C) 70.5) confirmed the absence of the OH group at C(10) (*Table 2*).

The ESI-MS/MS analysis assisted in locating the mono-THF system and lateral side chain on the basis the fragment-ion peaks at m/z 371.0, 299.1, 271.1, 255.4, 245.0, 241.3, 171.0, and 199.2, 141.0 for α,β -unsaturated- γ -lactone moiety (*Fig. 3*).

The ESI-MS/MS analysis also allowed positioning of the 1,3-diol group in **1** and **2**. In compound **1**, the OH groups were at C(12) and C(10) evidenced by the fragment-ion peaks at m/z 255.4 and 237.2 (loss of H₂O), 241.3 (C(10)/C(11) bond cleavage), 199.2 (C(8)/C(9) bond cleavage), and 141.0 (C(4)/C(5) bond cleavage), confirming the presence of only one OH group at C(4) (*Fig. 3*).

In compound **2**, the OH groups were at C(6) and C(4) as indicated by fragment-ion peaks at m/z 199.3 (C(7)/C(8) bond cleavage), as well as 181.7 and 163.0 (loss of H₂O), respectively. Further evidences were provided by the peaks at m/z 227.2 (C(9)/C(10) bond cleavage) and 185.2 (C(6)/C(7) bond cleavage), establishing the presence of OH groups at C(4) and C(6) (*Fig. 4*).

A comparative analysis of ¹H- and ¹³C-NMR data of compound **1** and **2** with those of models reported in the literature suggest a *pseudo-erythro* configuration for 1,3-diol group in both structures [7][8]. Compound **3** was previously isolated from the stem bark of *A. bullata* [9] and *A. squamosa* [4]; however, this is the first report of its

Table 2. ¹*H- and* ¹³*C-NMR* (500 and 125 MHz, resp., in CD₃OD) *Data of Coriapentocin B* (2). Atom numbering as indicated in *Fig. 1.*

Position	2		
	$\delta(\mathrm{H})$	$\delta(C)$	
1	_	175.1	
2	-	130.1	
3	2.36-2.39(m), 2.46-2.47(m)	33.0	
4	$3.84 - 3.86 (m)^{a}$	69.0	
5	1.55 - 1.61 (m)	40.4	
6	3.67 - 3.69(m)	70.3	
7-11	$1.36 - 1.41 (m)^{a}$	22.4-33.0	
12	3.57 - 3.60 (m)	70.5	
13-16	$1.36 - 1.41 (m)^{a}$	22.4-33.1	
17	$3.42 - 3.44 (m)^{a}$	73.8	
18	$3.81 - 3.87 (m)^{a}$	82.9	
19-20	$2.00-2.01 (m)^{a}$	28.3-28.2	
21	$3.81 - 3.87 (m)^{a}$	82.6	
22	$3.42 - 3.44 (m)^{a}$	73.8	
23-31	1.36 - 1.41 (m)	22.4-33.1	
32	0.92(t, J = 6.5)	13.1	
33	7.38(s)	153.0	
34	5.12(q, J = 13.0)	78.4	
35	1.42 (d, J = 6.5)	17.8	
^a) Signals overlaped.			

Fig. 3. Proposed Fragments for the Principal Peaks and Positioning of the 1,3-Diol Group Detected in ESI-MS/MS of 1

Fig. 4. Proposed Fragments for Principal Peaks and Positioning of the 1,3-Diol Group Detected in ESI-MS/MS of 2

isolation from the *Annona* genus seeds. Compounds **1** and **2** differ by the position of their 1,3-diol moieties and are described herein for the first time.

Experimental Part

General. TLC: Silica-gel plates 60 F 254 (SiO₂; Macherey–Nagel). Column chromatography (CC): silica gel (SiO₂, 70–230 mesh; Kieselgel 60; Merck) and Sephadex LH-20 (Sigma–Aldrich), in normal mode and under atmospheric pressure; elution in gradient mode. IR Spectra: Bomem MB-100 spectrophotometer; KBr discs; $\tilde{\nu}$ in cm⁻¹. 1D- and 2D-NMR spectra: Bruker AVANCE-500; ca. 2–5 mg of substance in CDCl₃ or CD₃OD (0.5 ml); δ in ppm rel. to Me₄Si as internal standard, J in Hz. HR-ESI-MS: Bruker MicrOTOF_Q II; recorded between m/z 50–1500 in positive-ion mode; in m/z. LC-ESI- and ESI-MS: LC analyses were conducted with a Varian ProStar 410 autosampler coupled with a Varian 500-MS mass detector ion-trap analyzer and electrospray ionization source (ESI-MS), operating in a positive-ion mode scan in the range of m/z 50–2000. The MS spectra were recorded during the HPLC using the following conditions: MS/MS analysis with starting collision-induced dissociation energy was varied in intervals of 5 eV. LC was equipped with a Gemini C18 5 µm 110 Å column (250 × 4.6 mm; Phenomenex), linear gradient, 0.1% TFA in H₂O (A) and MeOH (B); column eluted with isocratic flow control of A (85%) over 60 min; flow rate, 1 ml/min. The ion-trap MS system is coupled with a LC system including a binary pump (Varian ProStar 210) and a UV/VIS detector (Varian ProStar 325) at 220 nm. The MSWorkstation Varian software, version 6.9.2.

Plant Material. Annona coriacea MART. (Annonaceae) was collected on side roads Tangará da Serra town, Mato Grosso, Brazil. A voucher specimen (No. 269) was deposited with the Laboratory of Botany of Research Center, Studies and Development Agro-Environmental (CPEDA) of Universidade do Estado de Mato Grosso (UNEMAT), Mato Grosso, Brazil.

Extration and Isolation. The seeds of A. coriacea were dried at 29°. The dried material was pulverized to afford the powdered seeds (701.0 g) and submitted to successive cold extractions with 81 of hexane $(7 \times 7 \text{ d})$ and 121 of MeOH $(7 \times 7 \text{ d})$ to afford the hexane (110 g) and MeOH (51.9 g) extracts, resp., after solvent evaporation in vacuo. The hexane extract (111.0 g) was submitted MeOH/H₂O 9:1 liquidliquid partition, obtaining the MeOH fraction (15.3 g). This fraction was submitted to CC (CHCl₃ and MeOH) to afford 92 fractions. Frs. 27-31 (8.63 g) were reunited and submited to CC (hexane, CHCl₃, AcOEt, and MeOH) to furnish 47 fractions. Fr. 30 (144.0 mg) was obtained as a white amorphous precipitate, affording a mixture of two isomeric compounds (sample A; 31.2 mg) after MeOH washing. Sample A was analyzed by ESI-LC/MS, and at 26.94 min a major peak was observed which corresponded to 1. Frs. 32-50 (0.67 g) were reunited and subjected to CC (gradient elution with hexane, CHCl₃, AcOEt, and MeOH) to afford 39 fractions. A white precipitate containing a mixture of two isomeric compounds (sample B; 28.0 mg) was obtained from Fr. 22. Sample B was analyzed by LC/MS, and at 55.70 min a major peak corresponding to compound 3 was observed. An aliquot of the MeOH extract (42.5 g) was submitted to CC (gradient elution with CHCl₃ and MeOH) to give 159 fractions. Frs. 39-42 (0.56 g) were reunited by TLC analysis and subjected to CC (gradient elution with hexane, CHCl₃, AcOEt, and MeOH) to afford 22 fractions. The subgroup comprising Frs. 4-6 were reunited (0.41 g) and subjected to CC (Sephadex LH-20; MeOH) to give sample C as a white waxy material (12.7 mg), from the Frs. 13–16. A mixture of four compounds with different LC/MS $t_{\rm R}$ values was obtained from sample C, with a major peak at 29.19 min corresponding to compound 2.

Coriapentocin A (= 5-Methyl-3-[(8R,10R,15R)-2,8,10,15-tetrahydroxy-15-{(2R,5R)-tetrahydro-5-[(1R)-1-hydroxyundecyl]furan-2-yl]pentadecyl]furan-2(5H)-one; **1**). White powder. IR (KBr): 3401, 2924, 2846, 1751, 1656, 1460, 1375, 1073. ¹H- and ¹³C-DEPT-Q: see *Table 1*. ESI-MS (80 V): 635.1 ([M + Na]⁺, C₃₅H₆₄NaO⁺₈), 613.1 ([M + H]⁺, C₃₅H₆₅O⁺₈), 487.3, 371.0, 327.3, 299.1, 281.0, 271.1, 255.4, 245.0, 241.3, 237.2, 199.2, 171.0, 141.0. HR-ESI-MS: 613.4696 ([M + H]⁺, C₃₅H₆₅O⁺₈; calc. 613.4679).

Coriapentocin B (= 5-Methyl-3-[(2S,4S,15R)-2,4,10,15-tetrahydroxy-15-{(2R,5R)-tetrahydro-5-[(1R)-1-hydroxyundecyl]furan-2-yl}pentadecyl]furan-2(5H)-one; **2**). White powder. IR (KBr): 3420, 2960, 2945, 1727, 1649, 1460, 1377, 1071. ¹H- and ¹³C-DEPT-Q: see *Table 2*. ESI-MS (80 V): 635.1 ([M + Na]⁺, C₃₅H₆₄NaO^{*}₈), 613.1 ([M + H]⁺, C₃₅H₆₅O^{*}₈), 371.3, 3273, 299.1, 287.4, 281.3, 269.4, 261.3, 251.3, 245.2, 245.0, 199.3, 185.2, 181.7, 163.0. HR-ESI-MS: 613.4283 ([M + H]⁺, C₃₅H₆₅O^{*}₈; calc. 613.4679).

The authors are grateful to *Instituto Nacional de Ciência e Tecnologia em Àreas Úmidas* (INCT-Áreas Úmidas), *Fundação de Amparo a Pesquisa do Estado do Mato Grosso* (FAPEMAT), and *Coordenação de Aperfeiçoamento de Pessoal de Nível Superior* (CAPES) for scholarships and financial support.

REFERENCES

- [1] A. F. Pontes, M. R. de V. Barbosa, P. J. M. Maas, Acta Bot. Bras. 2004, 18, 281.
- [2] L. W. Chatrou, H. Rainer, P. J. M. Maas, in 'Annonaceae (soursop family)', Eds. N. Smith, S. A. Mori, A. Hendersen, D. W. Stevenson, S. V. Heald, Princeton University Press, New Jersey, 2004, p. 18.
- [3] N. Li, Z. Shi, Y. Tang, J. Chen, X. Li, Beilstein J. Org. Chem. 2008, 4, 48.
- [4] D. C. Hopp, F. Q. Alali, Z.-M. Gu, J. L. McLaughlin, Bioorg. Med. Chem. 1998, 6, 569.
- [5] F. Q. Alali, X.-X. Liu, J. L. McLaughlin, J. Nat. Prod. 1999, 62, 504.
- [6] A. Bermejo, B. Figadere, M. C. Zafra-Polo, I. Barrachina, E. Estornell, D. Cortes, Nat. Prod. Rep. 2005, 22, 269.
- [7] F.-E Wu, Z.-M. Gu, L. Zeng, G.-X. Zhao, Y. Zhang, J. L. McLaughlin, S. Sastrodihardjo, J. Nat. Prod. 1995, 58, 830.
- [8] F.-E Wu, L. Zeng, Z.-M. Gu, G.-X. Zhao, Y. Zhang, J. T. Schwedler, J. L. McLaughlin, S. Sastrodihardjo, J. Nat. Prod. 1995, 58, 909.
- [9] Z.-M. Gu, X.-P. Fang, L. Zeng, K. V. Wood, J. L. McLaughlin, Heterocycles 1993, 36, 2221.

Received January 28, 2014